Cost-effective methylome sequencing of cell-free DNA for accurately detecting and locating cancer

Nat Commun. 2022 Sep 29;13(1):5566. doi: 10.1038/s41467-022-32995-6.

Abstract

Early cancer detection by cell-free DNA faces multiple challenges: low fraction of tumor cell-free DNA, molecular heterogeneity of cancer, and sample sizes that are not sufficient to reflect diverse patient populations. Here, we develop a cancer detection approach to address these challenges. It consists of an assay, cfMethyl-Seq, for cost-effective sequencing of the cell-free DNA methylome (with > 12-fold enrichment over whole genome bisulfite sequencing in CpG islands), and a computational method to extract methylation information and diagnose patients. Applying our approach to 408 colon, liver, lung, and stomach cancer patients and controls, at 97.9% specificity we achieve 80.7% and 74.5% sensitivity in detecting all-stage and early-stage cancer, and 89.1% and 85.0% accuracy for locating tissue-of-origin of all-stage and early-stage cancer, respectively. Our approach cost-effectively retains methylome profiles of cancer abnormalities, allowing us to learn new features and expand to other cancer types as training cohorts grow.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell-Free Nucleic Acids* / genetics
  • Cost-Benefit Analysis
  • Early Detection of Cancer
  • Epigenome
  • Humans
  • Stomach Neoplasms* / diagnosis
  • Stomach Neoplasms* / genetics

Substances

  • Cell-Free Nucleic Acids